
Bilkent University
Department of Computer Engineering

Senior Design Project

Final Report

Project Name: Mutrivia

Team ID: T2316

Group Members: Lara Fenercioğlu, Gökhan Taş, Sebahattin Utku Sezer,
Zeynep Büşra Ziyagil, Bedirhan Sakinoğlu

Supervisor: Halil Altay Güvenir

Innovation Expert: Melih Gezer



Table of Contents
1. Introduction 2

2. Requirements Details 2

3. Final Architecture and Design Details 3

4. Development/Implementation Details 7

5. Test Cases and Results 8

6. Maintenance Plan and Details 21

7. Other Project Elements 23

7.1. Consideration of Various Factors in Engineering Design 23

7.2. Ethics and Professional Responsibilities 25

7.3. Teamwork Details 25

7.3.1. Contributing and functioning effectively on the team 25

7.3.2. Helping to create a collaborative and inclusive environment 26

7.3.3. Taking the lead role and sharing leadership on the team 26

7.3.4. Meeting objectives 27

7.4. New Knowledge Acquired and Applied 27

8. Conclusion and Future Work 28

9. Glossary 28

10. References 30

1



1. Introduction
Museums are learning environments that primarily focus on engaging and
educating communities. Nevertheless, many people visit museums without
paying enough attention to learn about exhibited objects. People miss tons of
information, and even though they read it carefully, the information is lost after a
while. Besides, some people consider museum trips as boring activities. To
prevent these issues, museums have initiated projects which will increase visitor
interaction and make museums more informative. For this purpose, gamification
is one of the methodologies used at museums [1]. As Mutrivia, we aimed to
develop a quiz game that utilizes artificial intelligence to generate multiple-choice
questions. During museum trips, the visitors will play this quiz to evaluate how
well they performed and at the end, we will give an award from the museum’s gift
shop. Therefore, the visitors will learn while having fun.

2. Requirements Details
Mutrivia is a quiz-based competitive game powered by natural language
processing for museum visitors. Mutrivia will consist of two different types of
clients: Museums and visitors. Museums will pay Mutrivia and be registered into
the database system. They will use it for increasing the flow of people, increase
the interaction, and make their museum more enjoyable and informative at the
same time. For a museum to be available on Mutrivia, that museum’s artifacts’
information must be uploaded to Mutrivia so that questions can be generated
using NLP (Natural Language Processing). When it comes to the visitors, they
will be able to play a quiz-based competitive game that consists of questions
about the museum they have visited. They can play either with a group or solo.
When they play as a group, a session will be created, and there will be a host
user. The host will share the session ID, which will be unique for the current
session. When the game starts, participants of the session will earn scores for
each correct answer according to their response time. According to the final
scores of the participants, museums will be able to give some small rewards to
top scorers. The museums will decide on these rewards. During the game,
visitors answer the quiz questions that were generated before. The system will
generate questions from the given text and provide four answer options, one of
them being the correct answer. One of our challenges will be generating false
answer choices as distractions. The system must provide answers similar to the
real answer; thus, the player should be distracted.

2



3. Final Architecture and Design Details
3.1. Software Architecture

Figure 1: Architectural Overview of Mutrivia

The software architecture of Mutrivia is an example of client-server architecture.
Artificial Intelligence Service is utilized for generating questions from texts and
the Backend Service which is responsible for database operations and business
logic of Mutrivia is deployed on the web server. Mutrivia web client initiates a
request from the server to utilize services and resources and the server side
responds to the request by providing the requested services and resources to the
web client. There are several communication protocols used between services
and clients of Mutrivia for communication. Between web client and backend
service, HTTP and WebSocket protocols are used. This connection between the
web client and the backend service is used for delivering the requests of the
client to the backend service, delivering the response of the backend service to
the client, and updating the client side according to the changes in the backend
service. Backend service and AI service communicate through RabbitMQ which
is a message broker using Advanced Message Queuing Protocol (AMQP). This
connection is utilized for delivering new texts from the backend service to the AI
service and delivering the generated questions from the AI service to the
backend service.

3



Figure 2: Backend Service Architecture

In the backend service of Mutrivia, layered architecture is utilized as we
implemented it by using the Spring Boot framework. Layers in the backend
service are arranged hierarchically and each of them has specific responsibility
and functionality. The controller layer of the backend service is responsible for
communicating with the web client by getting requests from the client and
providing the responses to these requests. The business logic used in the
backend service is implemented in the service layer. The repository layer is
responsible for communicating with the database in order to perform database
operations.

3.2. Server Architecture

Server architecture refers to the design and structure of a server system that
performs various tasks. It consists of different components such as hardware,
software, and networking components. They work together and provide services
to the users. In order to explain our server architecture, it was split into four
different sections. Our server architecture diagram can be seen below:

4



Figure 3: Server Architecture

1. Hardware and Operating System
In our design, we have an EC2 T3 instance that contains our web server.
It has 8 GB RAM and 16 GB storage capacity. Also, it has 2 vCPUs. Web
server runs on Fedora which is a popular Linux distribution. Since we used
a Linux distribution, it reduced our cost and it is easy to configure
compared to Windows operating system-based servers.

2. Software Services
In our design, we have an Amazon Simple Storage Service (S3) which
contains our files such as executables, and configurations. It enables us to
store parts of our application so that we can restore them if our web server
fails.

5



When it comes to databases, we used Relation Database Service (RDS)
which is based on MySQL. Since we used a service in the AWS Cloud and
our services are also in the same cloud, it helped us to configure and
maintain the connectivity between services.

In order to host our application, we used Nginx as a web server to handle
HTTP requests and serve our web application to clients. Moreover, it was
configured as a reverse proxy to handle our API request in the Spring
Boot application. Since we were familiar with Nginx, and it provides lots of
additional functionalities such as reverse proxy, and load balance, it was
easy to use and configure.

3. Networking
In our design, we used Route 53 Service as our DNS server. We
configured DNS records according to our domain name. In addition to that
Network Security Groups and Virtual Private Cloud (VPC) are used to
enable or limit the connection. According to our needs, we implemented
several rules in our access control list (ACL).

4. Scalability and High Availability
Since we use AWS Cloud Service, it is highly scalable in both vertically
and horizontally. When it comes to availability, we aimed to minimize our
downtime by using the services of AWS and its tools.

6



4. Development/Implementation Details

Figure 4: Technologies used in Mutrivia

● Angular: Angular is utilized for developing frontend of Mutrivia. Angular is a web
application framework that is used for developing dynamic and interactive
single-page web applications.

● Spring Boot: The backend Service of Mutrivia is developed by using the Spring
Boot framework. Spring Boot is a Java framework that is used for developing a
wide range of applications, specifically web applications.

● WebSocket: Apart from RESTful API which is used for HTTP communication,
there is a WebSocket connection between the backend service and the web
clients. WebSocket is utilized in Mutrivia to update the user interface according to
changes happening in the backend service.

● MySQL: As a design choice, we decided to use a relational database model for
Mutrivia. We chose MySQL due to its high performance, popularity, and
community support.

● RabbitMQ: RabbitMQ is an open-source message broker software that provides
a messaging system for applications to communicate with each other. It uses a
“producer-consumer” model where the producer sends messages to the broker

7



and the consumer receives those messages from the broker. In order to establish
connection asynchronously, and to ensure that messages are delivered reliably.

● Questgen: Questgen is a AI-powered tool that generates questions according to
a given text. We use texts of artifacts in the museum to feed Questgen.
Questgen was trained by using 2015 Reddit data. With the help of Questgen, we
are able to generate questions from the given text and provide four answer
options, one of them being the correct answer.

5. Test Cases and Results
Test
ID

Test Type Summary/Title Procedure Expected
Results

Priority/
Severity

Test
Results:
Success
or Not
Applica
ble (NA)

1.1 Functional Score increases
when you answer
correctly on the
quiz page

User entered the
session via id. The
host starts the
session. The user
is shown a
question and the
answer is selected
right. The score of
the user has
checked whether it
increased or not.

The score is
increased after
the right answer is
chosen

Major Success

1.2 Functional After the
countdown
finishes, the
answer buttons
disable

the Session is
started by the host.
The user is shown
a question and the
countdown starts.
The countdown
finished the buttons
are checked
whether they are
available or not.

Buttons are
disabled
according to time
successfully

Major Success

1.3 Functional Score changes
according if the
question is

Session is started
by the host. The
user is shown a

Score is
computed
according to the

Major Success

8



answered
correctly
depending on the
time left

question and the
answer is selected
right. The score is
checked if it is
computed
according to the
remaining time.

remaining time

1.4 Functional Question
answering time
still decreases
even app is closed

Session is started
by the host. The
user is shown a
question and the
countdown starts.
The app is left for
another. Time is
checked whether
the countdown
continues.

The countdown
still continues

Major Success

1.5 Functional When the answer
is correct the
score is added to
the database

User entered the
session via id. The
session is started
by the host. The
user is shown a
question and the
answer is selected
right. Check
whether the score
of the user is
posted to the
database.

The score of the
user is posted to
the database

Major Success

1.6 Functional Score does not
change when the
answer is wrong

The user entered
the session via id.
The session is
started by the host.
The user is shown
a question, and the
answer is selected
wrong. The score
of the user has
been checked
whether it
increased or not.

The Score is the
same after wrong
answers are
chosen

Major Success

1.7 Functional All question Session is started The buttons are Major Success

9



choices can be
clicked only once

by the host. The
user is shown a
question, and the
countdown starts.
A button is clicked
as an answer. The
buttons are
checked to
determine whether
they are available
or not.

unavailable

1.8 Functional Count down starts
as the questions
are available

Session is started
by the host. The
user is shown a
question and the
timer is checked
whether the
countdown started.

The countdown
started

Major Success

1.9 Functional When the
username is set it
is added to the
database

User opened the
app. Username is
asked for by the
app and entered by
the user.

User name is set
and sent to
database

Major Success

1.10 Functional Checking if the
start session
button starts the
session for users
in session

User opened the
app and started a
session as host.
Shared the id of
the session and
other users
entered. The host
pressed the start
session button. All
users in the
session check
whether their quiz
started or not.

All users in the
session started
their quiz

Major Success

1.11 Functional Checking the right
museum is
chosen based on
location data

User opened the
app. The museum
user is shown via
location data. The
museum shown is
checked whether it

The museum
shown is based
on the location

Major NA

10



is based on the
location.

1.12 Functional Check if the
location data is
available

User opened the
app. Checks
whether the
location data is
available.

The location data
is available

Major NA

1.13 Functional Checking when
the host ends the
session, the
scoreboard is
shown

User opened the
app and started a
session as host.
Shared the id of
the session and
other users
entered. The host
pressed the start
session button.
Questions are
answered. Then
host pressed the
end session button.
Check whether the
session ends with
attendees.

The session ends
with attendees

Major Success

1.14 Functional Checking when
the session end,
new scores are
added to the
leaderboard if
there are any
all-time high
scores.

User opened the
app. Username is
asked for by the
app and entered by
the user. Checks
whether users can
see the scores in
the leaderboard.

Users can see the
scores on leader
board

Major Success

1.15 Functional Checking when
the session ends,
attendees see the
scoreboard

The host pressed
the start session
button. Questions
are answered.
Then host pressed
the end session
button. Check
whether the
session attendees
see their session

Attendees are
able to see their
session
scoreboard.

Major Success

11



scoreboard.

1.16 Functional Checking when
the host ends the
session,
participants can
see the winner

The host pressed
the start session
button. Questions
are answered.
Then the host
pressed the end
session button.
Check whether the
host can see the
session scoreboard
and winners.

The host can see
the session
scoreboard and
winners.

Major Success

1.17 Functional Checking if there
is a call ongoing,
ensure the app is
running in the
background

User opened the
app. There is a call
ongoing. Checks
whether the app
runs in the
background.

The app runs on
the background.

Moderat
e

NA

1.18 Fuctional If a user joins
another host’s
session, check the
users shown on
the same session

After a user, other
than the session
host, joins a
session, check
which usernames
can the newly
joined user see.

There should be
at least the host’s
username on the
same session and
the newly joined
user’s username.
If there are more
users joining in
the same session,
the names should
appear.

Major Success

1.19 Functional If a user starts a
solo session quiz
starts with the
start button

The user pressed
the start session
button. Check
whether the user
can answer the
questions within
the quiz.

The questions are
shown, and the
countdown starts.

Major Success

1.20 Functional If a user is in a
session and
during the session
can see her score

The user pressed
the start session
button. Questions
are answered.
Check whether the
user can see the

The score is
shown to the user
while playing.

Major Success

12



score while
playing.

1.21 Functional If a user is in a
solo session and
ends the quiz, the
leaderboard is
shown with the
user's place if the
user is a high
scorer.

The user pressed
the start session
button. Questions
are answered.
Then user pressed
the end session
button. Check
whether the users
can see the
session
leaderboard with
his name included
if he is a high
scorer.

The leaderboard
is shown with the
user's place.

Major Success

1.22 Functional Check if a user
can see the
question’s answer
by using the
‘inspect’
functionality that
the web browser
provides

If a user tries to
inspect all answers
to a question, they
should not be able
to observe if that
answer is the
correct answer for
that particular
question.

User should not
be able to see if
an answer is the
correct answer by
inspecting all
answers on any
web browser user
uses

Major Success

1.23 Functional User can’t enter a
session ID that is
not available

Is a user tries to
enter a session ID
on the main menu
and if there is no
such ID, then the
user should be
prompted and can’t
enter the session.

Session not
available

Major Success

13



1.24 Functional User can change
location sharing
setting to on and
off via the setting
menu

User opens the
app. Enters the
settings menu on
the top right of the
screen. Modifies
the
location-sharing
setting. Checks
whether it is
changed to choice.

Location sharing
setting is modified

Moderat
e

NA

1.25 Functional User can change
music setting to
on and off via the
setting menu

User opens the
app. Enters the
settings menu on
the top right of the
screen. Modifies
the music setting.
Checks whether it
is changed to
choice.

Music setting is
modified

Moderat
e

NA

1.26 Functional User can change
the sound effects
set to on and off
via the setting
menu

User opens the
app. Enters the
settings menu on
the top right of the
screen. Modifies
the sound effects
setting. Checks
whether it is
changed to choice.

Sound effects
setting is modified

Moderat
e

NA

1.27 Functional User can change
language settings
from dropbox via
the setting menu

User opens the
app. Enters the
settings menu on
the top right of the
screen. Modifies
the language
setting. Checks
whether it is
changed to choice.

The language
setting is modified

Moderat
e

NA

14



1.28 Functional User can change
the font size
setting via the
setting menu

User opens the
app. Enters the
settings menu on
the top right of the
screen. Modifies
the font size
setting. Checks
whether it is
changed to choice.

Font size setting
is modified

Moderat
e

NA

1.29 Functional Check for
vibration effect if
present after time
is up

After time is up on
the answering
page, the phone
should vibrate
indicating the
countdown has
finished.

Vibration is
enabled.

Moderat
e

NA

1.30 Functional Check for
vibration effect if
present after the
game is finished.

After the game
session is finished,
the phone should
vibrate indicating
that.

Vibration is
enabled.

Moderat
e

NA

15



1.31 Functional User can change
the vibration
effects setting to
on and off via the
settings menu

User opens the
app. Enters the
settings menu on
the top right of the
screen. Modifies
the vibration
setting. Checks
whether it is
changed to choice.

Vibration setting is
modified

Moderat
e

NA

1.32 Functional Verify if the
loading symbol is
displayed
wherever required

User is in the
session. The
loading symbol is
shown in between
questions due to
generation time.

The loading
symbol is shown

Minor Success

1.33 Functional Check for scrolling In the page
scoreboard or
leaderboard, the
user may see lots
of scores of each
user and they can’t
be displayed on
one page so
scrolling to see
each user’s score
should be enabled.

Users can scroll
through the
scoreboard or
leaderboard.

Minor Success

16



1.34 Functional Max character in
nickname input
field

A user must enter
a nickname before
logging into the
session and

the User is not
allowed to get a
nickname with
characters more
than the defined
max character
value

Minor NA

1.35 Functional If a user is inactive
for too long, the
user should be
kicked out of
session.

After the user
enters the session,
if s/he stays away
for too long then
the app will
automatically
remove the user

App won’t allow
users to stay
away for a long
time to play the
game

Moderat
e

NA

2.36 Functional Check what
happens if the AI
service cannot
produce any
question for any
particular text.

When the backend
service sends a
text for any artifact
to the AI service, it
is expected for the
AI service to create
at least one
question. What
happens if it cannot
create any
question for that
text (this is
expected if the text
has lack
information).

a User should not
see a blank
question with
blank answers.
Instead, that text
should be skipped
for all existing
users in that
session if the AI
service cannot
create any
questions for it.

Major NA

17



2.37 Functional Check if the
questions
generated by the
AI service are
inverted.

After the AI service
creates a question
for any quiz
session, check if
the question
sentence is
inverted or if the
sentence has a
meaning.

All questions need
to make sense for
humans for
Mutrivia to be
consistent, and
the sentences
should not be
inverted

Major Success

3.38 Compatibil
ity

Cross-browser
compatibility

Each scenario is
checked in
browsers such as
Internet Explorer,
Firefox, Chrome,
Safari, and Opera
via BrowserStack.

The game runs in
each case via
BrowserStack.

Major NA

3.39 Compatibil
ity

Testing on mobile
devices

The application will
be tested on both
ios and android
OS.

The game run on
both OS.

Moderat
e

NA

3.40 Compatibil
ity

To validate that
the user interface
of the application
is as per the
screen size of the
device, no
text/control is
partially invisible
or inaccessible

The application will
be tested on
different-sized
mobile phones.

The game should
be the same
scaled visibility in
all mobile apps.

Moderat
e

Success

3.41 Compatibil
ity

It is to check the
application in
different networks
like 4G, WIFI, etc.

The application is
started. Checks the
connected network
is compatible with
the app, and data
is exchanged

The game is
available, and
data is exchanged

Major Success

4.42 Performan
ce

Showing
scoreboard less
than 2 seconds

User will click the
show scoreboard
button.

Scoreboard
should be
displayed in less

Moderat
e

Success

18



than 2 seconds.

4.43 Performan
ce

Generating
questions in less
than 5 seconds

User will start the
session and view
questions one by
one

Each question
should be
generated in less
than 5 seconds.

Moderat
e

Success

5.44 Rationality Generating
meaningful
questions

Since we generate
questions through
AI, questions
should reflect
meaningful
statements and
answers.

Users will see
rational questions.

Major Success

5.45 Rationality Check if the
scores are
calculated
properly

After answering a
question correctly,
the user should get
the point according
to the countdown
left.

User will see
his/her score
properly according
to the questions
answered
correctly.

Major Success

6.46 Reliability Right answer is
chosen the score
is calculated
immediately

User has chosen
the right choice.
Checks the score
calculation is
started
immediately.

The score
calculation is
started
immediately.

Moderat
e

Success

6.47 Reliability Web app must be
accessible on the
website of Mutrivia

User will access
the application
through the
website

App should be
accessible.

Moderat
e

Success

7.48 Security Only authorized
persons should
reach the artifact
information of
museums

Unauthorized
persons will try to
reach information
in the database

Connection
should be refused.

Major Success

8.49 Installation App should be
available to be
installed on App
Store

User will try to
install the app on
App Store

App should be
installed

Moderat
e

NA

8.50 Installation App should be
available to be

User will try to
install the app on

App should be
installed

Moderat
e

NA

19



installed on
Google Play Store

Play Store

9.51 Usability Texts on the
application should
be readable by
users

User will try to read
prompts and texts
on mobile device

Texts should be
easily readable

Moderat
e

Success

9.52 Usability Answer options
should be
displayed correctly

When the user gets
the question,
answer options are
selectable and
readable.

Answer options
are displayed
correctly

Moderat
e

Success

Table 1: Table of test cases

6. Maintenance Plan and Details
A comprehensive maintenance plan is required to maintain the smooth running
and continued enhancement of the Mutrivia application.

To address potential bugs, security vulnerabilities, and compatibility issues,
regular updates for the Mutrivia application should be implemented. These
updates will include improvements to the NLP algorithm, performance
optimizations, and new feature additions. The updates will be released
periodically, and feedback from museums and visitors will be taken into account
for continuous enhancement.

The museum artifacts' information database is crucial for generating questions in
Mutrivia. Regular maintenance and backups of the database should be
performed to prevent data loss. Additionally, as new artifacts are added to
museums or existing artifacts are modified, an efficient mechanism should be in
place to update the database accordingly.

Mutrivia will handle a significant amount of user traffic during peak periods,
especially when multiple museums and visitors engage simultaneously.
Continuous monitoring of the server infrastructure will ensure optimal
performance and availability. Scaling mechanisms, such as load balancing and
auto-scaling, should be implemented to handle increased traffic and ensure a
seamless experience for users.

20



A dedicated user support team should be available to address any queries,
issues, or feedback from museums and visitors. This team will provide timely
responses, troubleshooting assistance, and guidance to maximize user
satisfaction. Regularly analyzing user feedback will help identify areas of
improvement and drive future updates and enhancements.

Mutrivia should be optimized for fast and responsive performance to provide an
enjoyable user experience. Regular performance monitoring and profiling should
be conducted to identify and resolve any bottlenecks. Techniques like caching,
database indexing, and code optimization should be employed to improve
system responsiveness and reduce latency.

As stated in the requirements, the initial version of Mutrivia will support the
English language. However, future plans involve expanding language support to
include Turkish. The maintenance plan should consider the implementation of
language localization, including translation of question texts, user interfaces, and
support documentation, to reach to a wider audience.

Thorough testing and quality assurance processes should be implemented to
ensure the stability, functionality, and usability of Mutrivia. This includes
comprehensive testing of new features, regression testing, usability testing, and
performance testing. Continuous integration and automated testing practices
should be employed to streamline the development and deployment process.

Integration of analytics tools within Mutrivia will provide valuable insights into
user behavior, engagement patterns, and system performance. Tracking metrics
such as the number of active users, average session duration, popular artifacts,
and user feedback will help in making data-driven decisions for future updates
and improvements.

The maintenance plan for Mutrivia involves regular system updates, database
management, server monitoring and scaling, user support and feedback, security
measures, performance optimization, language support and localization,
continuous testing and quality assurance, and analytics integration. By
implementing this plan, Mutrivia can ensure a stable, secure, and engaging
experience for both museums and visitors, fostering increased interaction and
learning within the museum environment.

21



7. Other Project Elements
7.1. Consideration of Various Factors in Engineering Design
As part of our analysis, we consider how our system will be constrained or
affected by the factors such as public health, safety, and welfare, as well as
global, cultural, social, environmental, and economic factors.

Public Health
Mutrivia is a quiz game aiming to enhance the museum trip experience for
visitors, making it more fun and informative. There is no direct effect of Mutrivia
on public health. However, the pandemic might have a negative impact since
Mutrivia can increase the flow of people in museums.

Safety
Since Mutrivia is designed for museums to be more informative while being fun, it
does not directly correlate to individual or public safety.

Welfare
Mutrivia aims to enhance the museum trip experience of visitors, making it more
fun and informative. There is no direct effect of Mutrivia on public welfare. It may
increase people’s knowledge gained from museums, resulting in social and
cultural awareness indirectly. But, increasing social and cultural awareness is not
one of Mutrivia’s main aims.

Global
The target audience for Mutrivia is everyone around the globe. Since every
museum can support Mutrivia’s quiz at no additional cost, everyone can use
Mutrivia in the supported museums. Mutrivia will only support museums with
English artifact descriptions to be accessible by any museum. The data of
museums will be collected in English to be compatible globally.

Cultural
The app aims to increase visitor interaction in museums by using gamification to
increase the tour experience. Mutrivia will enhance the visitor’s engagement, and
the user will learn more from the experience due to the increase in engagement.
Through this process, users' cultural engagements will be augmented. Since the
game will be in English and it is used worldwide, there will not be a language
barrier between people from different countries and cultures. Moreover, Users'
personal beliefs or preferences will not be collected or used in any way.

22



Social
The only information asked from the users is the username, and it does not have
to be the real name of the user; they all will be considered nicknames. From a
social perspective, since no personal data of any user is saved in the platform,
there are no concerns for the sake of the user's privacy.

Environmental
Mutrivia has no environmental considerations, such as reducing its carbon
footprint. So, the application has no direct or indirect effects that can affect
environmental issues.

Economic
Mutrivia is expected to be accessible to any user. An annual subscription must be
bought for a museum to be added to Mutrivia for a year. To make the application
free for users, development costs must be minimized. Some free alternatives,
such as adding ads to applications, can be considered if needed.

Effect Level Effect

Public Health 2 Mutrivia may increase the
number of visitors during a

pandemic.

Public Safety 0 No effect

Public Welfare 0 No effect

Global Factors 5 English is used as it is a
global language. The
addition of a museum

should only require data in
English.

Cultural Factors 9 No discrimination will be
made in terms of language
and questions, as the same
algorithm will be used for

every museum.

Social Factors 3 Mutrivia does not require
personal data.

Environmental Factors 0 No effect

Economic Factors 5 Costs must be minimized.

23



Free alternative ways may
be considered.

Table 2: Table of factors and effects

7.2. Ethics and Professional Responsibilities
Since we are a group of 5 people, we all have a responsibility to each other. We
need to respect each other since all of us have different school lives where some
of us had more courses than others which may lead to unequal work division.
However, we put strict deadlines and work divisions accordingly. Furthermore, we
made sure that each of us take the responsibility for where s/he had more
knowledge and confidence.

We didn’t consider privacy as a design goal so there were no ethical
responsibilities that we take care of however the data coming from museums
might be confidential thus we kept those in a database that only admins can
reach.

Another responsibility that we considered is the implementation. There is a
possibility that our group may have to deal with bugs at the end of the
implementation. Thus, to solve the bugs more easily and early, group members
are required to follow coding conventions such as commenting on the code and
writing clean code as a professional responsibility.

7.3. Teamwork Details
7.3.1. Contributing and functioning effectively on the team

We mainly distribute the work equally among each other while considering
the load we have in school as well. Some of us have a different amount of
knowledge in the field of the project. Thus, we can help each other at any
time. When we have meetings, we usually divide work and talk about
future plans. If most of us have time, we start a task such as a final report.
After finishing our own part, we always ask one of us to check the writing.

For proper division of the tasks, the documentation of the project is done
with the equal contribution of every member of the group. Front-end
development and overall testing are performed by Sebahattin Utku Sezer
and Lara Fenercioğlu. are done by Bedirhan Sakinoğlu. Back-end
implementations and bug fixing are completed by Bedirhan Sakinoğlu.
Finally, deployment, Database implementation, and integrations were

24



Gökhan Taş’s and Zeynep Büşra Ziyagil’s responsibility. All the members
of the project contribute to the project demo.

Moreover, we hosted Discord meetings at least twice a week to ensure
that everyone was participating in the project, and when we started
implementation we met twice a day so that we can ask our technical
questions easily.

7.3.2. Helping to create a collaborative and inclusive
environment

Since our team is all friends from the past, we usually easily communicate
with each other and create a collaborative environment. Our team
members met via online platforms like Discord in general. To pursue a
stronger connection, we met inside of school and made crucial decisions
face-to-face by meeting with our supervisor Halil Altay Güvenir. We do,
however, host regular meetings once a week to keep everyone involved.
Sometimes we divide a task and work in pairs, and it helps us to see each
other’s mistakes. Therefore, we learn synchronously. After finishing a
paired task, we usually show the work done to each other so that we get
additional feedback. We really emphasize working in an inclusive
environment. Thus, we work all the time closely.

7.3.3. Taking the lead role and sharing leadership on the team
Team of Mutrivia does not have a specific leader who leads the whole
team. We mainly make essential decisions by consultation in our
meetings. Although we do not have a leader within our team, we distribute
tasks equally by our interests and availability. As a team, we always meet
once a week to keep track of our tasks and decide on what can be done
next. On our project’s milestones, we arranged a meeting and worked
together for everyone to get an overview of the tasks until the upcoming
milestone of our project, Mutrivia.

7.3.4. Meeting objectives
We planned to build a mobile application however due to a couple of
Flutter-issued problems we couldn’t manage our time to understand and
solve the problem. Therefore, we didn’t have an application to be used on
Android or iOS. However, we finished the quiz web application version on
time. We were planning to create a web version of the project since some

25



people may not want to deal with downloading the game during their short
museum trip. Thus, we started on the web version earlier and after we
discovered that we can’t finish the mobile version on time; we worked
more on the web version such as improving the user interface and finding
bugs. On the other hand, we finished the artificial intelligence-powered
quiz and the game conventions on time which was the main milestone of
our project.

7.4. New Knowledge Acquired and Applied
Although this was a senior project, we wanted to explain our idea to other people
as well by joining competitions like Ankara Startup Summit. After competing
there, we won pre-incubation support from Bilkent Cyberpark, CyberCulture thus
we had the opportunity to further develop our project by getting feedback from
various mentors. We learned how to build a startup company. Afterward, we
decided to join a Hackathon organized by VakıfBank where we had the chance to
expand our idea of Mutrivia and go beyond our scope. There, we learned how to
develop an idea and present it in front of the public. Since we had previous
courses related to presentation and reporting from distinctive ENG and CS
courses, we had no trouble in these competitions.

On the other hand, we learned different technologies. We utilized technology with
which we had a bit of knowledge but no expertise throughout the creation of this
project. Although some of us already knew the technologies we used, some of us
had to learn to understand the implementation and the bugs related to them.
These were Dart, Flutter, AWS, Angular, and Spring. We have constantly
searched for better ways while implementing the functionalities so that we could
maximize the technicality of this project and minimize the defects. We have
looked for similar projects and which technologies they used and completed
literature reviews to understand which technologies are more suitable.

8. Conclusion and Future Work
After finishing two semesters focusing on this project, we achieved many
milestones in our lives. We learned how to be a team and work collaboratively.
We learned how to build a project from zero to a fully functional application.

We are going to talk with the Ministry of Culture and Tourism since we would like
our application to be used all over Turkey and in order to take this milestone, we
need data from the museums. Although we had some connections with private

26



museums like Rahmi Koç Museum, it is not enough. When we attended the
CyberCulture program with Mutrivia, we had the chance to speak to the General
Director of Copyrights of the Ministry of Culture and Tourism, Mr. Ziya Taşkent,
and we got positive feedback from them which motivated us to keep going. Also,
the General Manager of Bilkent Cyberpark, Faruk İnaltekin listened to our project
and said that they can help us to reach the museums. All of these experiences
contributed to our success besides school thus we plan to implement this project
in real life where people can actually benefit from museums by having fun while
learning. Since we couldn’t implement the mobile application, we will try to
implement it in Android first but using another technology rather than Flutter,
afterwards, we will work on the IOS version.

9. Glossary
Gamification: The use of elements of game-playing in another activity, usually to
make that activity more interesting [2].

Natural Language Processing (NLP): The use of computers to process natural
languages, for example, for translating [2].

Artificial Intelligence (AI): The study and development of computer systems
that can copy intelligent human behavior [2].

Flutter: An open-source, cross-platform UI development kit developed by
Google.

AWS: Amazon Web Services (AWS) is an online platform that provides scalable
and cost-effective cloud computing solutions.

Amazon Elastic Compute Cloud (Amazon EC2): provides scalable computing
capacity in the AWS Cloud.

REST API: A REST API is an Application Programming Interface (API or web
API) that conforms to the constraints of REST architectural style and allows for
interaction with RESTful web services [3].

Treasure Hunt: A game in which a group or individual tries to be the first to find
a hidden object.

27



10. References

[1] A. López-Martínez, Á. Carrera, and C. A. Iglesias, “Empowering museum
experiences applying gamification techniques based on Linked Data and
smart objects,” Applied Sciences, vol. 10, no. 16, p. 5419, 2020.

[2] “Oxford Learner's dictionaries: Find definitions, translations, and grammar
explanations at Oxford Learner's dictionaries,” Oxford Learner's Dictionaries |
Find definitions, translations, and grammar explanations at Oxford Learner's
Dictionaries, 2022. [Online]. Available:
https://www.oxfordlearnersdictionaries.com/. [Accessed: 21-Feb-2023].

[3] IBM Cloud Education, “Rest-apis,” IBM, 06-Apr-2021. [Online]. Available:
https://www.ibm.com/cloud/learn/rest-apis. [Accessed: 12-Nov-2022].

28


