
Bilkent University
Department of Computer Engineering

Senior Design Project

Detailed Design Report

Project Name: Mutrivia

Team ID: T2316

Group Members: Lara Fenercioğlu, Gökhan Taş, Sebahattin Utku Sezer,
Zeynep Büşra Ziyagil, Bedirhan Sakinoğlu

Supervisor: Halil Altay Güvenir

Innovation Expert: Melih Gezer

March 13, 2023
This report is submitted to the Department of Computer Engineering of Bilkent University in partial
fulfillment of the requirements of the Senior Design Project course CS491/2.



Table of Contents
1. Introduction 3

1.1. Purpose of the system 3
1.2. Design Goals 3

1.2.1. Performance 3
1.2.2. Usability 3
1.2.3. Extensibility 4
1.2.4. Rationality 4
1.2.5. Portability 4
1.2.6. Security 4
1.2.7. Reliability 4

1.3. Overview 5
2. Current software architecture 5
3. Proposed software architecture 6

3.1. Overview 6
3.2. Subsystem decomposition 6
3.3. Hardware/Software Mapping 7
3.4. Persistent Data Management 8
3.5. Access Control and Security 8

4. Subsystem Services 9
4.1. Client 9

4.1.1. User Interface 9
4.1.2. Helper 10

4.2. AWS 10
4.2.1. Backend Service 11
4.2.2. AI Service 12
4.2.3. Persistent Data Management 14

5. Test Cases 15
6. Consideration of Various Factors in Engineering Design 28

6.1. Public Health 28
6.2. Safety 28
6.3. Welfare 28
6.4. Global 29
6.5. Cultural 29
6.6. Social 29
6.7. Environmental 29
6.8. Economic 29

1



7. Teamwork Details 30
7.1. Contributing and Functioning Effectively on Team 30
7.2. Helping Create a Collaborative and Inclusive Environment 31
7.3. Taking a Lead Role and Sharing Leadership on the Team 31

8. Glossary 31
9. References 32

2



1. Introduction
1.1. Purpose of the system
Museums are learning environments that primarily focus on engaging and
educating communities. Nevertheless, many people visit museums without
paying enough attention to learn about exhibited objects. People miss tons of
information, and even though they read it carefully, the information is lost after a
while. Besides, some people consider museum trips as boring activities. To
prevent these issues, museums have initiated projects which will increase visitor
interaction and make museums more informative. For this purpose, gamification
is one of the methodologies used at museums [1]. It is planned to develop a
mobile application that utilizes artificial intelligence and gamify museum trips. In
addition to the mobile version of our application, we are going to design a web
version of it to eliminate the burden of downloading the application. We will build
an interactive question-based game that can be played on mobile phones.

1.2. Design Goals
1.2.1. Performance

Each question will be generated in real time, and the process of
generation should not take more than 5 seconds for a smooth user
experience. Mutrivia will store only the information texts of artifacts of
museums. When a user plays Mutrivia, the user will see multiple questions
which are generated in real-time. If the question generation time is too
long, the user will wait too much to see the question, which will be
annoying. Also, it should be scalable because multiple museums are
going to be enrolled, and numerous people will be online in the system,
and all requests should be handled without delay or any problem. To
improve the performance of our application, we will use a dedicated server
for question generation, and all the operations, such as user registration
and session formation, will be made on the server side, as mobile phones
are much slower at doing such calculations.

1.2.2. Usability
Both mobile and web applications will be used by many people and people
of many ages. Therefore it should be user-friendly. Since we aim to make
museums more entertaining, the applications should not frustrate users.
Also, they should look attractive and likable since they will be constructed
as games. In short, simple, easily understandable, and appealing
interfaces will be provided. The user interfaces should be simple, with no

3



distracting themes. As the main aim of this project is to increase the
interaction of people who visit museums with the exhibited objects,
complex and detailed user interfaces may distract users from museum
objects to only the application. However, to entertain children, for instance,
the buttons can be colorful. There can also be an option for elderly people
to increase the font size etc. As Mutrivia, we want everyone to enjoy our
application.

1.2.3. Extensibility
We will begin with a couple of museums. Therefore, the application should
be adaptable to other museums that may be included in the future. In
addition, we may add new functionalities in the future, such as different
language options, different levels of difficulty, and different question types.

1.2.4. Rationality
Questions that Mutrivia generates using natural language processing must
be compatible with the corresponding object description text. The
questions should not be out of context from the objects’ descriptions. Also,
the answer choices of the question should be relevant to the question, and
the wrong answers should be compatible with the correct answer so that it
can distract the player.

1.2.5. Portability
As it was mentioned before, there will be both mobile and web
applications for our product. There will be no desktop version of this
project. Mutrivia will be available on both Android and iOS operating
systems. As for the web version, the latest version of current browsers will
support our product.

1.2.6. Security
All the data collected from museums will be kept securely. No third-party
user is going to be accessing this private data.

1.2.7. Reliability
The applications must not have extended server downtime to give users
an uninterrupted experience. It also must not be laggy and have delays.
As the users are competing while trying to answer the questions, the

4



sessions and users’ local experience must not be interrupted for long or
frequently.

1.3. Overview
Mutrivia is a quiz-based competitive mobile game powered by natural language
processing for museum visitors. Mutrivia will consist of two different types of
clients: Museums and visitors. Museums will buy the application and be
registered into the system. They will use it for their purposes, such as increasing
the flow of people, increasing the interaction, and making their museum more
enjoyable and informative at the same time. For a museum to be available on
Mutrivia, that museum’s artifacts’ information must be uploaded to Mutrivia so
that questions can be generated using NLP (Natural Language Processing).
When it comes to the visitors, they will be able to play a quiz-based competitive
game that consists of questions about the museum they have visited. They can
play either with a group or solo. When they play as a group, a session will be
created, and there will be a host user. The host will share the session ID, which
will be unique for the current session. When the game starts, participants of the
session will earn scores for each correct answer according to their response
time. According to the final scores of the participants, museums will be able to
give some small rewards to top scorers. The museums will decide on these
rewards. During the game, each question will be generated instantaneously. The
system will generate questions from the given text and provide four answer
options, one of them being the correct answer. One of our challenges will be
generating false answer choices as distractions. The system must provide
answers similar to the real answer; thus, the player should be distracted.

Since we are planning to develop this application for global usage, the language
of the application will be English. In the future, we plan to make a version that
supports the Turkish language, and it will generate questions in Turkish.

2. Current software architecture
In the current market, there are some applications that aim to solve the same
problem as Mutrivia does. The names of the applications we found are
THATMuse and Virtual Museum.

THATMuse aims to solve the museum’s lack of interest problem from the visitors
by making it interactive like Mutrivia. The main difference between THATMuse
and Mutrivia is that THATMuse is a treasure hunt game being played in

5



museums, which has no effect on interactive learning. With a treasure hunt,
users of THATMuse try to be the first to find the artifact that is in the museum.

Another application that aims to solve the same problem with Mutrivia is Virtual
Museum. Virtual Museum aims to carry the museum environment into virtual
reality. By using this competitor application, users can travel inside the museum
and learn from the artifacts as if they were in the museum. However, Virtual
Museum does not encourage its users to be in the museum to utilize the
application physically. While it may increase the effects of museums’ learning
factors in pandemics or similar situations, it does not make museums more
interactive.

That being said, Mutrivia has some competitors that aim to solve common
problems as Mutrivia, with different approaches. Despite these applications being
a great source for both interactivity and enhanced learning for museums, none of
them makes both of these improvements. With the use of artificial intelligence in
question generations, we aim to make museum trips more instructive, and by
making question-answering a competitive game, we aim to make museum trips
more interactive and entertaining.

3. Proposed software architecture
3.1. Overview

In this section, the software architecture and the subsystem
decomposition of the system are explained. Data management and
security concerns are also addressed below.

3.2. Subsystem decomposition
Mutrivia has a client-server architecture. The server side is divided into
two; ai service and backend service. Client-side is the mobile and web
applications. Client-side will use and depend on the server side to handle
user inputs, updates and get information from the AI service. It consists of
a user interface, which includes views such as quizzes or menus. Then,
there are its helper modules, such as request and update modules which
are used for communicating with the backend service. The project will be
up and running on AWS servers. The backend and AI services, and
persistent data will be handled on that side. Backend services consist of a
user module, game module, session, and text data modules. Then, the
connection modules such as WebSocket, Rest APIs, and RabbitMQ. AI

6



services consist of a question generation module, and it also contains a
RabbitMQ module to communicate within persistent data that will be
handled by MySQL. The users can only access these layers via API
requests.

Figure 1: Subsystem Decomposition
https://imgur.com/a/sjXrh2B

3.3. Hardware/Software Mapping
Our mobile application operates on both iOS and Android devices on the
client side, with the client hardware solely responsible for displaying views.
We will also have a web application as a client-side application. The
business logic and data layer are in the cloud, leveraging AWS. As a
result, clients must use HTTP to send requests to the server for
communication. On the server side, we use EC2 machines and workers to
handle the traffic. Our system’s hardware/software mapping is described
below by a UML Deployment Diagram.

7

https://imgur.com/a/sjXrh2B


Figure 2: Deployment Diagram
https://imgur.com/a/0UIuhZv

3.4. Persistent Data Management
Data obtained from museums will be stored in Mutrivia’s database.
Information texts about objects in museums will be utilized to generate
questions by retrieving them from the database. Additionally, user data,
such as their nickname, status, sessions, and scores, will be stored on this
database. In addition, information about created sessions will also be
stored in the database. Also, there will be a leaderboard showing all-time
high scorers, which we will be held in the database.

3.5. Access Control and Security
Mutrivia keeps the user’s nickname and score information. These data will
be stored specifically for a session, but only scores will be added to the
all-time leaderboard. Also, artifact texts from the museums will be stored
in the database, and these won’t be shared with third-party systems.
Therefore, it is possible to encrypt stored data using MySQL’s functionality.
Thus, there are no security concerns. Besides, there are two types of
users where one user must be the host, and the rest will be the players.
Therefore, the host will have special rights such as creating, starting, and
ending the session. The players will have only access to play the game
and see the results.

8

https://imgur.com/a/0UIuhZv


4. Subsystem Services
4.1. Client

Client is the first package that includes components that enables user to
interact with the application. It consists of two sub-packages which are
User Interface and Helper.

4.1.1. User Interface

Figure 3: User Interface Module of Mutrivia

User interface is the part where the user will interact with the
application. The user interface component contains the screens
that are explained below:

● Quiz View: This view contains the quiz competition that
includes questions and answers. It also contains the scores
of each user in that competition.

● Registration View: This view contains the first screen that
users will see to start playing the game. Before joining, users
should register and enter a nickname.

● Menu View: This view contains the screen where the user
chooses to play solo, join a session, or host a session. If a
user wants to join a session, the session ID must be entered
on this screen.

9



4.1.2. Helper

Figure 4: Helper Module of Mutrivia

Helper module functions synchronously with the user interface and
is responsible for communicating with the backend service of
Mutrivia.

● Request Module: User-generated requests will be handled
by this module.

● Update Module: Backend-generated updates will be
handled by this module.

4.2. AWS
AWS is the second package of our system. There are three sub-packages
which are Backend Service, AI Service, and Persistent Data Management.

10



4.2.1. Backend Service

Figure 5: Backend Service of Mutrivia

Backend Service is the part where all business logic is established.
It contains several modules that mostly establish connections
between the Client package and other sub-packages. All
sub-packages are explained below:

● User Module: This module contains the implementation of
operations related to users, such as registration, retrieving
users, deleting users, and managing user points.

● Session Module: Operations related to sessions, such as
creating a session, retrieving session information, and
deleting sessions, are implemented in this module.

● Game Module: This module contains the implementation of
operations used for the quiz game, such as triggering
question generation, starting the quiz, ending the quiz, and
so on.

11



● TextData Module: This module contains implementation
related to managing information texts from museums.

● RabbitMQ Module: This module is responsible for using a
message queue to send information texts and receive the
generated questions from the AI Service.

● WebSocket: WebSocket is used for updating the user
interface without the user sending a request.

● REST API: It is utilized to handle HTTP requests sent by the
user interface.

● Data Management Module: This module is responsible for
data management and communicating with the database.

4.2.2. AI Service

Figure 6: AI Service of Mutrivia

AI module of Mutrivia handles the question generation
functionalities of Mutrivia. After it receives the text that needs a
question from the backend service, it creates as many

12



multiple-choice questions as it can and returns the questions to the
backend service.

● Question Generation Module: The question generation AI
will be up and running in this module. The consumed
messages from the RabbitMQ module will be sent to this
module, and this module will use NLP technology to create
questions and send them back to the RabbitMQ module for it
to publish the questions back.

● RabbitMQ Module: RabbitMQ module, as the name implies,
is a message broker module. It uses RabbitMQ for its
message queue. Every time the AI module needs to
consume messages from the backend service, it arrives at
the RabbitMQ module first. In the same way, every time that
an AI module creates questions and needs to publish the
messages to the backend service, it also uses this module
for this particular process.

13



4.2.3. Persistent Data Management

Figure 7: Persistent Data Management Service of Mutrivia

The stored data of the whole project system will be handled by this
subpackage.

● MySQL Module: A MySQL database that will store
museum, session, and user information. The Data
Management module from Backend Service will have
permission to access the database only.

14



5. Test Cases
Test
ID

Test
Type/Category

Summary/Title Procedure Expected
Results

Priority/
Severity

Date
Tested/
Test
Results

1.1 Functional Score increases
when you answer
correctly on the
quiz page

User entered
the session via
id. The session
is started by the
host. The user is
shown a
question and the
answer is
selected right.
The score of the
user has
checked
whether it
increased or
not.

The score is
increased after
the right
answer is
chosen

Major

1.2 Functional After the
countdown
finishes, the
answer buttons
disable

the Session is
started by the
host. The user is
shown a
question and the
countdown
starts. The
countdown
finished the
buttons are
checked
whether they
are available or
not.

Buttons are
disabled
according to
time
successfully

Major

1.3 Functional Score changes
according if the
question is
answered correctly
depending on the
time left

Session is
started by the
host. The user is
shown a
question and the
answer is
selected right.
The score is

Score is
computed
according to
the remaining
time

Major

15



checked if it is
computed
according to the
remaining time.

1.4 Functional Question
answering time still
decreases even
app is closed

Session is
started by the
host. The user is
shown a
question and the
countdown
starts. The app
is left for
another. Time is
checked
whether the
countdown
continues.

The
countdown still
continues

Major

1.5 Functional When the answer
is correct the score
is added to the
database

User entered
the session via
id. The session
is started by the
host. The user is
shown a
question and the
answer is
selected right.
Check whether
the score of the
user is posted to
the database.

The score of
the user is
posted to the
database

Major

1.6 Functional Score does not
change when the
answer is wrong.

The user
entered the
session via id.
The session is
started by the
host. The user is
shown a
question, and
the answer is
selected wrong.
The score of the
user has been
checked

The Score is
the same after
wrong answers
are chosen

Major

16



whether it
increased or
not.

1.7 Functional All question
choices can be
clicked only once

Session is
started by the
host. The user is
shown a
question, and
the countdown
starts. A button
is clicked as an
answer. The
buttons are
checked to
determine
whether they
are available or
not.

The buttons
are
unavailable

Major

1.8 Functional Count down starts
as the questions
are available

Session is
started by the
host. The user is
shown a
question and the
timer is checked
whether the
countdown
started.

The
countdown
started

Major

1.9 Functional When the
username is set it
is added to the
database

User opened the
app. Username
is asked for by
the app and
entered by the
user.

User name is
set and sent to
database

Major

1.10 Functional Checking if the
start session
button starts the
session for users
in session

User opened the
app and started
a session as
host. Shared the
id of the session
and other users
entered. The
host pressed the
start session

All users in the
session started
their quiz

Major

17



button. All users
in the session
check whether
their quiz started
or not.

1.11 Functional Checking the right
museum is chosen
based on location
data

User opened the
app. The
museum user is
shown via
location data.
The museum
shown is
checked
whether it is
based on the
location.

The museum
shown is
based on the
location

Major

1.12 Functional Check if the
location data is
available

User opened the
app. Checks
whether the
location data is
available.

The location
data is
available

Major

1.13 Functional Checking when the
host ends the
session, the
scoreboard is
shown

User opened the
app and started
a session as
host. Shared the
id of the session
and other users
entered. The
host pressed the
start session
button.
Questions are
answered. Then
host pressed the
end session
button. Check
whether the
session ends
with attendees.

The session
ends with
attendees

Major

1.14 Functional Checking when the
session end, new
scores are added

User opened the
app. Username
is asked for by

Users can see
the scores on
leader board

Major

18



to the leaderboard
if there are any
all-time high
scores.

the app and
entered by the
user. Checks
whether users
can see the
scores in the
leaderboard.

1.15 Functional Checking when the
session ends,
attendees see the
scoreboard

The host
pressed the
start session
button.
Questions are
answered. Then
host pressed the
end session
button. Check
whether the
session
attendees see
their session
scoreboard.

Attendees are
able to see
their session
scoreboard.

Major

1.16 Functional Checking when the
host ends the
session,
participants can
see the winner

The host
pressed the
start session
button.
Questions are
answered. Then
the host pressed
the end session
button. Check
whether the host
can see the
session
scoreboard and
winners.

The host can
see the
session
scoreboard
and winners.

Major

1.17 Functional Checking if there is
a call ongoing,
ensure the app is
running in the
background

User opened the
app. There is a
call ongoing.
Checks whether
the app runs in
the background.

The app runs
on the
background.

Moderate

19



1.18 Fuctional If a user joins
another host’s
session, check the
users shown on
the same session

After a user,
other than the
session host,
joins a session,
check which
usernames can
the newly joined
user see.

There should
be at least the
host’s
username on
the same
session and
the newly
joined user’s
username. If
there are more
users joining in
the same
session, the
names should
appear.

Major

1.19 Functional If a user starts a
solo session quiz
starts with the start
button

The user
pressed the
start session
button. Check
whether the
user can answer
the questions
within the quiz.

The questions
are shown,
and the
countdown
starts.

Major

1.20 Functional If a user is in a
session and during
the session can
see her score

The user
pressed the
start session
button.
Questions are
answered.
Check whether
the user can see
the score while
playing.

The score is
shown to the
user while
playing.

Major

1.21 Functional If a user is in a
solo session and
ends the quiz, the
leaderboard is
shown with the
user's place if the
user is a high
scorer.

The user
pressed the
start session
button.
Questions are
answered. Then
user pressed
the end session
button. Check
whether the

The
leaderboard is
shown with the
user's place.

Major

20



users can see
the session
leaderboard with
his name
included if he is
a high scorer.

1.22 Functional Check if a user can
see the question’s
answer by using
the ‘inspect’
functionality that
the web browser
provides

If a user tries to
inspect all
answers to a
question, they
should not be
able to observe
if that answer is
the correct
answer for that
particular
question.

User should
not be able to
see if an
answer is the
correct answer
by inspecting
all answers on
any web
browser user
uses

Major

1.23 Functional User can’t enter a
session ID that is
not available

Is a user tries to
enter a session
ID on the main
menu and if
there is no such
ID, then the user
should be
prompted and
can’t enter the
session.

Session not
available

Major

1.24 Functional User can change
location sharing
setting to on and
off via the setting
menu

User opens the
app. Enters the
settings menu
on the top right
of the screen.
Modifies the
location-sharing
setting. Checks
whether it is
changed to
choice.

Location
sharing setting
is modified

Moderate

1.25 Functional User can change
music setting to on
and off via the

User opens the
app. Enters the
settings menu

Music setting
is modified

Moderate

21



setting menu on the top right
of the screen.
Modifies the
music setting.
Checks whether
it is changed to
choice.

1.26 Functional User can change
the sound effects
set to on and off
via the setting
menu

User opens the
app. Enters the
settings menu
on the top right
of the screen.
Modifies the
sound effects
setting. Checks
whether it is
changed to
choice.

Sound effects
setting is
modified

Moderate

1.27 Functional User can change
language settings
from dropbox via
the setting menu

User opens the
app. Enters the
settings menu
on the top right
of the screen.
Modifies the
language
setting. Checks
whether it is
changed to
choice.

The language
setting is
modified

Moderate

1.28 Functional User can change
the font size
setting via the
setting menu

User opens the
app. Enters the
settings menu
on the top right
of the screen.
Modifies the font
size setting.
Checks whether
it is changed to
choice.

Font size
setting is
modified

Moderate

22



1.29 Functional Check for vibration
effect if present
after time is up

After time is up
on the
answering page,
the phone
should vibrate
indicating the
countdown has
finished.

Vibration is
enabled.

Moderate

1.30 Functional Check for vibration
effect if present
after the game is
finished.

After the game
session is
finished, the
phone should
vibrate
indicating that.

Vibration is
enabled.

Moderate

1.31 Functional User can change
the vibration
effects setting to
on and off via the
settings menu

User opens the
app. Enters the
settings menu
on the top right
of the screen.
Modifies the
vibration setting.
Checks whether
it is changed to
choice.

Vibration
setting is
modified

Moderate

23



1.32 Functional Verify if the loading
symbol is
displayed
wherever required

User is in the
session. The
loading symbol
is shown in
between
questions due to
generation time.

The loading
symbol is
shown

Minor

1.33 Functional Check for scrolling In the page
scoreboard or
leaderboard, the
user may see
lots of scores of
each user and
they can’t be
displayed on
one page so
scrolling to see
each user’s
score should be
enabled.

Users can
scroll through
the scoreboard
or
leaderboard.

Minor

1.34 Functional Max character in
nickname input
field

A user must
enter a
nickname before
logging into the
session and

the User is not
allowed to get
a nickname
with characters
more than the
defined max
character
value

Minor

24



1.35 Functional If a user is inactive
for too long, the
user should be
kicked out of
session.

After the user
enters the
session, if s/he
stays away for
too long then
the app will
automatically
remove the user

App won’t
allow users
staying away
for a long time
to play the
game

Moderate

2.36 Functional Check what
happens if the AI
service cannot
produce any
question for any
particular text.

When the
backend service
sends a text for
any artifact to
the AI service, it
is expected for
the AI service to
create at least
one question.
What happens if
it cannot create
any question for
that text (this is
expected if the
text has lack
information).

a User should
not see a
blank question
with blank
answers.
Instead, that
text should be
skipped for all
existing users
in that session
if the AI
service cannot
create any
questions for
it.

Major

2.37 Functional Check if the
questions
generated by the
AI service are
inverted.

After the AI
service creates
a question for
any quiz
session, check if
the question
sentence is
inverted or if the
sentence has a
meaning.

All questions
need to make
sense for
humans for
Mutrivia to be
consistent, and
the sentences
should not be
inverted

Major

25



3.38 Compatibility Cross-browser
compatibility

Each scenario is
checked in
browsers such
as Internet
Explorer,
Firefox,
Chrome, Safari,
and Opera via
BrowserStack.

The game runs
in each case
via
BrowserStack.

Major

3.39 Compatibility Testing on mobile
devices

The application
will be tested on
both ios and
android OS.

The game run
on both OS.

Moderate

3.40 Compatibility To validate that the
user interface of
the application is
as per the screen
size of the device,
no text/control is
partially invisible or
inaccessible

The application
will be tested on
different-sized
mobile phones.

The game
should be the
same scaled
visibility in all
mobile apps.

Moderate

3.41 Compatibility It is to check the
application in
different networks
like 4G, WIFI, etc.

The application
is started.
Checks the
connected
network is
compatible with
the app, and
data is
exchanged

The game is
available, and
data is
exchanged

Major

4.42 Performance Showing
scoreboard less
than 2 seconds

User will click
the show
scoreboard
button.

Scoreboard
should be
displayed in
less than 2
seconds.

Moderate

4.43 Performance Generating
questions in less
than 5 seconds

User will start
the session and
view questions
one by one

Each question
should be
generated in
less than 5
seconds.

Moderate

26



5.44 Rationality Generating
meaningful
questions

Since we
generate
questions
through AI,
questions
should reflect
meaningful
statements and
answers.

Users will see
rational
questions.

Major

5.45 Rationality Check if the scores
are calculated
properly

After answering
a question
correctly, the
user should get
the point
according to the
countdown left.

User will see
his/her score
properly
according to
the questions
answered
correctly.

Major

6.46 Reliability Right answer is
chosen the score
is calculated
immediately

User has
chosen the right
choice. Checks
the score
calculation is
started
immediately.

The score
calculation is
started
immediately.

Moderate

6.47 Reliability Web app must be
accessible on the
website of Mutrivia

User will access
the application
through the
website

App should be
accessible.

Moderate

7.48 Security Only authorized
persons should
reach the artifact
information of
museums

Unauthorized
persons will try
to reach
information in
the database

Connection
should be
refused.

Major

8.49 Installation App should be
available to be
installed on App
Store

User will try to
install the app
on App Store

App should be
installed

Moderate

8.50 Installation App should be
available to be
installed on Google
Play Store

User will try to
install the app
on Play Store

App should be
installed

Moderate

27



9.51 Usability Texts on the
application should
be readable by
users

User will try to
read prompts
and texts on
mobile device

Texts should
be easily
readable

Moderate

9.52 Usability Answer options
should be
displayed correctly

When the user
gets the
question,
answer options
are selectable
and readable.

Answer
options are
displayed
correctly

Moderate

Table 1: Table of test cases

6. Consideration of Various Factors in
Engineering Design
As part of our analysis, we consider how our system will be constrained or
affected by the factors such as public health, safety, and welfare, as well as
global, cultural, social, environmental, and economic factors.

6.1. Public Health
Mutrivia is an application aiming to enhance the museum trip experience
of visitors, making it more fun and informative. There is no direct effect of
Mutrivia on public health. However, the pandemic might have a negative
impact since Mutrivia can increase the flow of people in museums.

6.2. Safety
Since Mutrivia is designed for museums to be more informative while
being fun, it does not directly correlate to individual or public safety.

6.3. Welfare
Mutrivia is an application aiming to enhance the museum trip experience
of visitors, making it more fun and informative. There is no direct effect of
Mutrivia on public welfare. It may increase people’s knowledge gained
from museums, resulting in social and cultural awareness indirectly. But,
increasing social and cultural awareness is not one of Mutrivia’s main
aims.

28



6.4. Global
The target audience for Mutrivia is everyone around the globe. Since
every museum can support Mutrivia’s quiz at no additional cost, everyone
can use Mutrivia in the supported museums. The application will only
support museums with English artifact descriptions to be accessible by
any museum. The data of museums will be collected in English to be
compatible globally.

6.5. Cultural
The app aims to increase visitor interaction in museums by using
gamification to increase the tour experience. Mutrivia will enhance the
visitor’s engagement, and the user will learn more from the experience
due to the increase in engagement. Through this process, users' cultural
engagements will be augmented. Since the application will be in English
and it is used worldwide, there will not be a language barrier between
people from different countries and cultures. Moreover, Users' personal
beliefs or preferences will not be collected or used in any way.

6.6. Social
In the app, the only information asked from the users is the username, and
it does not have to be the real name of the user; they all will be considered
nicknames. From a social perspective, since no personal data of any user
is saved in the platform, there are no concerns for the sake of the user's
privacy.

6.7. Environmental
Mutrivia has no environmental considerations, such as reducing its carbon
footprint. So, the application has no direct or indirect effects that can affect
environmental issues.

6.8. Economic
The application is expected to be accessible to any user. An annual
subscription must be bought for a museum to be added to Mutrivia for a
year. To make the application free for users, development costs must be
minimized. Some free alternatives, such as adding ads to applications,
can be considered if needed.

29



Effect Level Effect

Public Health 2 Mutrivia may increase the
number of visitors during a

pandemic.

Public Safety 0 No effect

Public Welfare 0 No effect

Global Factors 5 English is used as it is a
global language. The
addition of a museum

should only require data in
English.

Cultural Factors 9 No discrimination will be
made in terms of language
and questions, as the same
algorithm will be used for

every museum.

Social Factors 3 Mutrivia does not require
personal data.

Environmental Factors 0 No effect

Economic Factors 5 Costs must be minimized.
Free alternative ways may

be considered.
Table 2: Table of factors and effects

7. Teamwork Details
7.1. Contributing and Functioning Effectively on Team

We mostly distribute the work equally among each other while considering
the load we have in school as well. Most of us have almost the same
amount of knowledge in the field of the project. Thus, we can help each
other at any time. When we have meetings, we usually divide work and
talk about future plans. If most of us have time, we start a task such as a
detailed design report. After finishing our own part, we always ask for one
of us to check the writing.

30



For proper division of the tasks, the documentation of the project is done
with the equal contribution of every member of the group. Frontend
development is performed by Gökhan Taş and Lara Fenercioğlu.
Database implementation and integrations are done by Zeynep Ziyagil.
Back-end development is done by Sebahattin Utku Sezer and Bedirhan
Sakinoğlu. All the members of the project contribute to the project demo.

7.2. Helping Create a Collaborative and Inclusive
Environment
Since our team is all friends from the past, we usually easily communicate
with each other and create a collaborative environment. Our team
members met via online platforms like Discord in general. To pursue a
stronger connection, we met inside of school and made crucial decisions
face-to-face by meeting with our supervisor Halil Altay Güvenir. We do,
however, host regular meetings once a week to keep everyone involved.
Sometimes we divide a task and work in pairs, and it helps us to see each
other’s mistakes. Therefore, we learn synchronously. After finishing a
paired task, we usually show the work done to each other so that we get
additional feedback. We really emphasize working in an inclusive
environment. Thus, we work all the time closely.

7.3. Taking a Lead Role and Sharing Leadership on the
Team
Team of Mutrivia does not have a specific leader who leads the whole
team. We mostly make essential decisions by consultation in our
meetings. Although we do not have a leader within our team, we distribute
tasks equally by our interests and availability. As a team, we always meet
once a week to keep track of our tasks and decide on what can be done
next. On our project’s milestones, we arranged a meeting and worked
together for everyone to get an overview of the tasks until the upcoming
milestone of our project, Mutrivia.

31



8. Glossary
Gamification: The use of elements of game-playing in another activity, usually to
make that activity more interesting [2].

Natural Language Processing (NLP): The use of computers to process natural
languages, for example, for translating [2].

Artificial Intelligence (AI): The study and development of computer systems
that can copy intelligent human behavior [2].

Flutter: An open-source, cross-platform UI development kit developed by
Google.

AWS: Amazon Web Services (AWS) is an online platform that provides scalable
and cost-effective cloud computing solutions.

Amazon Elastic Compute Cloud (Amazon EC2): provides scalable computing
capacity in the AWS Cloud.

REST API: A REST API is an Application Programming Interface (API or web
API) that conforms to the constraints of REST architectural style and allows for
interaction with RESTful web services [3].

Treasure Hunt: A game in which a group or individual tries to be the first to find
a hidden object.

32



9. References
[1] A. López-Martínez, Á. Carrera, and C. A. Iglesias, “Empowering museum
experiences applying gamification techniques based on Linked Data and
smart objects,” Applied Sciences, vol. 10, no. 16, p. 5419, 2020.

[2] “Oxford Learner's dictionaries: Find definitions, translations, and grammar
explanations at Oxford Learner's dictionaries,” Oxford Learner's Dictionaries |
Find definitions, translations, and grammar explanations at Oxford Learner's
Dictionaries, 2022. [Online]. Available:
https://www.oxfordlearnersdictionaries.com/. [Accessed: 21-Feb-2023].

[3] IBM Cloud Education, “Rest-apis,” IBM, 06-Apr-2021. [Online]. Available:
https://www.ibm.com/cloud/learn/rest-apis. [Accessed: 12-Nov-2022].

33


